
676
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.3 MARCH 2007

LETTER

Latency-Aware Bus Arbitration for Real-Time Embedded Systems

Minje JUN†, Kwanhu BANG†, Hyuk-Jun LEE††, Nonmembers, and Eui-Young CHUNG†∗a), Member

SUMMARY We present a latency-aware bus arbitration scheme for
real-time embedded systems. Only a few works have addressed the quality
of service (QoS) issue for traditional busses or interconnection network.
They mostly aimed at minimizing the latencies of several master blocks,
resulting in decreasing overall bandwidth and/or increasing the latencies of
other master blocks. In our method, the optimization goal is different in
that the latency of a master should be as close as a given latency constraint.
This is achieved by introducing the concept of “slack”. In this method,
masters effectively share the given communication architecture so that they
all observe expected latencies and the degradation of overall bandwidth is
marginal. The experimental results show that our method greatly reduces
the number of constraint violations compared to other conventional arbitra-
tion schemes while minimizing the bandwidth degradation.
key words: latency, arbiter, QoS, performance, bus, slack

1. Introduction

Rapid growth in semiconductor technology is prompting the
integration of billions of transistors on a single silicon die.
System-on-Chip (SoC) is a typical example of such a trend
and many embedded systems adopt SoCs as their processing
core. The major challenge in SoC design is to meet the time-
to-market (TTM) requirement due to increasing die size
and design complexity. For this reason, the concept of de-
sign reuse is extremely important and platform-based design
methodology has been widely accepted [1]. Even though IP
components can be reused for different designs, their com-
munication architecture should be carefully designed for the
given constraints, since each design may have different per-
formance specifications and constraints. Suppose an MPEG
decoder which can handle various picture sizes. Digital Me-
dia Broadcast (DMB) applications require the decoder to
process 15 frames (picture size: CIF) per second while a
high-end Portable Media Player (PMP) requires the decoder
to process 30 frames per second even with a larger picture
size. Apparently, they need different communication band-
widths and latencies, hence the communication architecture
should be tuned for each application. For this reason, com-
munication architecture design is one of the time-consuming
steps in SoC design [2].

Multi-layer bus architecture was proposed as a solu-
tion to satisfy the bandwidth and latency requirements, but

Manuscript received July 11, 2006.
Manuscript revised September 13, 2006.
†The authors are with Yonsei University, Seoul, Korea.
††The author is with Cisco Systems Incorporation, CA, USA.
∗Corresponding author.

a) E-mail: eychung@yonsei.ac.kr
DOI: 10.1093/ietisy/e90–d.3.676

the number of bus layers is limited by the routing density
and external pin counts to access the external DRAM mem-
ories. In contemporary designs, external DRAM memories
are widely used because they are affordable. Even in multi-
layer architecture, we need an arbitration scheme to handle
the concurrent data transfer requests from multiple masters
for each layer.

Classical arbitration schemes are round-robin and fixed
priority. The former is appropriate when masters have the
same bandwidth requirements while the latter is appropriate
when some masters require a higher bandwidth than oth-
ers. A hybrid scheme of these two is also widely used.
However, they often ignore the latency issue or assume that
the latency requirement is proportional to the bandwidth re-
quirement. The Time-Division-Multiple-Access (TDMA)
scheme is another bandwidth-conscious arbitration scheme.
It provides guaranteed throughput but increases the overall
throughput by allowing the unused timing slots to be filled
with best effort traffic. Recently, latency-conscious [3]–[6]
or QoS-aware [4], [7], [8] arbitrations are being introduced.
LOTTERYBUS [3] resolves the long latency issues by en-
hancing the TDMA scheme with a statistical method. It
allocates tickets to masters and a master can take the bus
with a probability proportional to the number of given tick-
ets. The arbiter selects a master based on the probabilities
assigned to masters. Weber et al. proposed a QoS-aware
arbitration scheme where they introduced the concept of
“epoch” [4]. Epoch is a group of requests and its size can
be different for each master. The arbiter allocates band-
width and service order (e.g. latency) on a per-epoch ba-
sis. These approaches resolve the latency issues by min-
imizing the latency. Some other works improved the la-
tency and bandwidth efficiency by introducing a topolog-
ical change while using conventional arbitration schemes
such as round robin [5], [6]. SAMBA BUS allows multiple
masters to share the same bus when their targets are differ-
ent [5]. FLEXBUS [6] provides a reconfigurable feature to
dynamically alter bandwidth and latency requirement with
using ‘reconfiguration unit.’ Again, these methods aim at
minimizing latency for QoS. The limitation of previous ap-
proaches is that excessive reduction of latency of a certain
master may increase the latencies of other masters. To avoid
such weakness, we propose a scheduler by using the con-
cept of “slack”. The goal of our method is not to minimize
the latency but to adjust it to the given latency constraint by
minimizing the slack with minor hardware overhead. Note
that we do not aim at replacing the existing arbiters with our

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



LETTER
677

method, but providing a complementary solution to the ex-
isting arbiters. More precisely, our scheduler can be added
to any existing arbiters, such as round-robin, fixed-priority,
TDMA and LOTTERY arbiter. Our scheme improves the
latency characteristics of existing arbiters while rarely alter-
ing the bandwidth characteristics.

Section 2 describes the basic architecture of our arbi-
tration scheme and the experimental results are shown in
Sect. 3 followed by conclusions in Sect. 4.

2. Latency-Aware Arbiter

Figure 1 shows the architecture of the proposed latency-
aware arbiter.

As shown in Fig. 1, the arbiter consists of a con-
ventional bandwidth-conscious arbiter and a scheduler.
Latency-critical masters set the latency registers in a sched-
uler to their latency constraints. Whenever a master issues a
request, the scheduler computes the slack using Eq. (1) and
loads it into the corresponding slack counter.

Slacki = Li − Bi × Ti − S j (1)

where, Slacki is the slack of the request from master i, Li is
the latency constraint of master i, Bi is the burst length of the
request, Ti is the transfer time per beat, and S j is the latency
of a target slave j.

In many cases, the slave latency is not fixed and varies
depending on the workload and its internal states. For in-
stance, DRAM memory controller has a variable latency
depending on the addresses of memory references. Bank
conflicts or same row accesses could dramatically change
the memory access time. Furthermore, it may have internal
memory access scheduler to maximize its bandwidth utiliza-
tion. In this work, we conservatively assume the worst case
slave latency to compute the data transfer latency.

The slack counter is decremented every clock cycle and
thus the scheduler updates slack information every clock cy-
cle. Note that the latency constraint can be dynamically set
whenever a master needs to change it to perform a different
operation.

A global threshold value is programmed and a com-
parator compares the slack of a request to the threshold
value. If it is less than or equal to the threshold, the sched-
uler tells the bandwidth-conscious arbiter to preempt the
other requests. If the slacks of all pending requests are larger

Fig. 1 Architecture of latency-aware arbiter.

than the threshold, the conventional bandwidth-conscious
arbiter solely determines the control, since there is no inter-
vention from the scheduler. More precisely, our arbiter has a
two-level hierarchy. The first level is the conventional band-
width conscious arbiter which arbitrates the requests when
there is no request from the second level arbiter. The second
level arbiter is the scheduler. It does not perform the arbi-
tration itself. Instead it preempts the scheduling of the first
level arbiter if the slack is equal to or less than the threshold.

Note that the request informed by the scheduler can-
not stop the current data transfer and should wait until the
current transfer is completed. Also, when there are multiple
requests whose slacks are equal to or less than the thresh-
old, there is no way to schedule all the requests to meet
their constraints. The scheduler selects the request which
has the smallest slack and informs the arbiter. For these rea-
sons, the proposed arbitration scheme is more appropriate
for soft real-time constraints rather than hard real-time con-
straints. However, it is true that most of IP components have
input/output buffers to avoid the disaster due to constraint
violation. Thus, our arbitration scheme can be applicable
to hard real-time applications if the violated interval is rea-
sonably small so that the input/output buffers can absorb the
overflow.

Even though the proposed scheme seems to have a
large hardware overhead, latency constraints are at most a
few hundred cycles and each register needs less than 10 bits
in most cases. Furthermore, latency registers and slack
counters need to be allocated only for latency-critical mas-
ters. Also, Ti is mostly 1 cycle in most cases and thus mul-
tipliers are not needed. To summarize, the proposed scheme
requires two subtractors, one latency register, one slack reg-
ister, and a comparator per a single latency critical master
with some glue logics.

3. Experimental Results

To assess the effect of the proposed arbitration scheme,
we implemented AHB bus models [9] and our arbitration
scheme in SystemC. More precisely, we implemented two
versions of latency-aware arbitration schemes – a round-
robin (R-R) arbiter with the scheduler and a fixed-priority
(F-R) arbiter with the scheduler. We also implemented a
stand-alone round-robin and fixed priority arbiter without
the scheduler for comparison.

The workload used in this experiment is summarized
in Table 1. The aggregated bandwidth requirement from all
masters is set to 150% of ideal bandwidth which is heavy
enough to appreciate the benefit of the proposed scheduler.
The traffics for four masters are uniformly distributed so

Table 1 Workload summary.



678
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.3 MARCH 2007

that the bus contention ratio is very high. The burst length
(HBURST signal in AHB) of all requests is assumed to be
8 cycles and the slave service time (or latency) is set to 8
cycles. Also, we assume all requests are for read trans-
fer. Therefore, the minimum latency of a request is 9 cycles
which is the sum of 1 cycle for grant and 8 cycles for slave
latency, and the minimum service time is 17 cycles, the sum
of minimum latency and 8 cycles for 8-beat transfer. Since
the latency constraints of M1 and M3 are 26, which is the
sum of the minimum service time and the slave latency, at
most 1 transfer can be completed while one of them is re-
questing, which means M1 and M3 must get into scheduling
condition as soon as they request. For this reason, we set the
threshold value to the same as the latency constraints of M1
and M3 so that any request is completed within the given
timing constraint.

In this setting, M1 is the most critical master since it
requires high bandwidth with low latency. M2 is also de-
manding from a bandwidth perspective, but its latency con-
straint is relatively loose. M3 is the opposite case where
the bandwidth requirement is relatively low while its latency
constraint is tight. M4 is the least important master due to its
low bandwidth requirement and a loose latency constraint.
In case of fixed-priority schemes (for both with the sched-
uler and without the scheduler), we assign the highest prior-
ity to M1 and the lowest priority to M4. As far as M2 and
M3 are concerned, M2 is assigned to a higher priority than
M3 in Fixed Priority 1 (F-P1). In Fixed-Priority 2 (F-P2),
M3 is assigned to a higher priority than M2 to give priority
to a latency sensitive master.

Figure 2 shows the average latency of each master in
four different arbitration schemes. Although it seems that
the R-R shows a minimum overall latency, the average la-
tencies of M1 and M3 are over their constraints while those
of M2 and M4 have a large margin to their constraints. In
the F-Px cases, M4 and M3 (only in F-P1) violate their con-
straints quite a bit while the latencies of M1 and M2 are
over-minimized. On the other hand, the arbiters with the
proposed scheduler nicely mitigate the latency issues by dis-
tributing the bus ownership based on the slack information.

Even though the average latencies for the proposed
scheduler are within given constraints, individual requests

Fig. 2 Average latency of four arbitration schemes. (R-R: Round-Robin,
F-P: Fixed-Priority R-S: R-R with Scheduler, FPx-S: F-Px with Scheduler)

may violate the given constraint. Table 2 shows the percent-
age of total requests that violate constraints and the longest
violated cycles of all masters for the different arbitration
schemes.

Table 2 shows that the proposed scheme has not much
effect over R-R, but greatly improves over F-P cases. R-
S shows a little degradation for M2 and M4 over R-R in
terms of longest violated cycles. Even though the violation
ratio is quite high, the proposed scheduler balances the vi-
olated cycles so that a certain master does not violate its
constraint too much. It is worth to repeat that our method is
aiming at soft real-time constrained applications rather than
the hard real-time applications, thus the ratio of violation
is much less important than the violated cycles. Figure 3
shows the average violated cycles of each master beyond its
latency constraints. It shows that the arbiters with the pro-
posed scheduler have much smaller deviation from the given
latency constraints. This is possible by considering the slack
in addition to the bandwidth requirement. Considering the
results from Table 2 and Fig. 3, and the fact that the mas-
ters can change their characteristics including the latency
constraints, we could use this feature to bound the violated
cycles for different masters. Bounding upper-limit of viola-
tion may allow system designer to choose more reasonable
buffer size to each master.

To analyze the impact on the existing arbitration
schemes, we also implemented TDMA arbitration scheme
with and without our scheduler and compared it with fixed-
priority scheme. In this experiment, we set the ratio of band-
width requirements as 4 : 4 : 1 : 1 for M1, M2, M3 and M4,
respectively. Also, the latency constraints are same to those
given in Table 1.

Table 2 Latency violation statistics for each scheme.

Fig. 3 The average violated cycles.



LETTER
679

Table 3 Comparison of TDMA and fixed-priority scheme. (TDMA-s:
TDMA with Scheduler)

We have three major observations from this experi-
ment as shown in Table 3. First, it was shown that TDMA
outperformed the fixed-priority scheme from the bandwidth
perspective when they are not augmented with the sched-
uler as expected. Second, the bandwidth allocation ratio of
both arbitration schemes is slightly affected by the proposed
scheduler. In other words, our scheduler rarely alters the
bandwidth characteristics of the given arbiter. Third, the la-
tency violations are greatly reduced with our scheduler as
shown in M4 (fixed-priority) and M3 (TDMA). This is be-
cause our scheduler only reorders the requests based on the
slack while the total number of requests served per master
remains the same.

4. Conclusions and Future Work

We propose a latency-aware arbitration scheme which intro-
duces a latency-aware scheduler in addition to an existing
bandwidth-conscious arbiter. Our scheduler rarely affects
on the bandwidth characteristics of the given arbitration
scheme, while its latency constraint satisfaction is improved
by the added scheduler as shown in the experimental re-
sults. The scheduler can be augmented with any bandwidth-
conscious arbiter such as TDMA and LOTTERY. The ar-
bitration scheme can be further enhanced from a latency
perspective by utilizing “retry” and/or “split” that are sup-
ported by many contemporary bus protocols. Also, it can

be further extended to support multi-thread communication
fabrics including Network-on-Chip (NoC) switching ele-
ments.

Acknowledgments

This work was partially supported by grant No. R01-2006-
000-10156-0 from the Basic Research Program of the Ko-
rea Science & Engineering Foundation, by IT R&D Project
funded by Korean Ministry of Information and Communica-
tions, by IDEC (IC Design Education Center), and by The
Korean Intellectual Property Office.

References

[1] A. Sangiovanni-Vincentelli, L. Carloni, F.D. Bernardinis, and M.
Sgroi, “Benefits and challenges for platform-based design,” DAC,
pp.409–414, 2004.

[2] U.Y. Ogras, J. Hu, and R. Marculescu, “Communication-centric SoC
design for nanoscale domain,” ASAP 2005, pp.73–78, 2005.

[3] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERY-
BUS: A new high performance communication architecture for sys-
tem on chip designs,” DAC, pp.15–20, 2001.

[4] W.D. Weber, J. Chou, J. Swarbrick, and D. Wingard, “A quality of
service mechanism for interconnection networks in system on chips,”
DATE, pp.1232–1237, 2005.

[5] R. Lu and C. Koh, “SAMBA-BUS: A high performance bus architec-
ture for system on chips,” ICCAD, 2003.

[6] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey, “FLEXBUS: A high
performance system-on-chip communication architecture with a dy-
namically configurable topology,” DAC, pp.571–574, 2005.

[7] A. Rădulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P.
Wielage, “An efficient on-chip network interface offering guaranteed
services, shared-memory abstraction, and flexible network configura-
tion,” DATE, vol.2, pp.878–883.

[8] K. Kim, S. Lee, K. Lee, and H. Yoo, “An arbitration look-ahead
scheme for reducing end-to-end latency in networks on chip,” IEEE
Circuits and Systems, pp.2357–2360, 2005.

[9] ARM, Limited. AMBA Specification, 1999.


